Eigenvalue asymptotic of Robin Laplace operators on two-dimensional domains with cusps
نویسنده
چکیده
We consider Robin Laplace operators on a class of two-dimensional domains with cusps. Our main results include the formula for the asymptotic distribution of the eigenvalues of such operators. In particular, we show how the eigenvalue asymptotic depends on the geometry of the cusp and on the boundary conditions.
منابع مشابه
On the Lowest Eigenvalue of Laplace Operators with Mixed Boundary Conditions
In this paper we consider a Robin-type Laplace operator on bounded domains. We study the dependence of its lowest eigenvalue on the boundary conditions and its asymptotic behaviour in shrinking and expanding domains. For convex domains we establish two-sided estimates on the lowest eigenvalues in terms of the inradius and of the boundary conditions. AMS Mathematics Subject Classification: 47F05...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملPrincipal eigenvalues for generalised indefinite Robin problems
We consider the principal eigenvalue of generalised Robin boundary value problems on non-smooth domains, where the zero order coefficient of the boundary operator is negative or changes sign. We provide conditions so that the related eigenvalue problem has a principal eigenvalue. We work with the framework involving measure data on the boundary due to [Arendt & Warma, Potential Anal. 19, 2003, ...
متن کاملLOWER BOUNDS FOR EIGENVALUES OF THE ONE-DIMENSIONAL p-LAPLACIAN
We also prove that the lower bound is sharp. Eigenvalue problems for quasilinear operators of p-Laplace type like (1.1) have received considerable attention in the last years (see, e.g., [1, 2, 3, 5, 8, 13]). The asymptotic behavior of eigenvalues was obtained in [6, 7]. Lyapunov inequalities have proved to be useful tools in the study of qualitative nature of solutions of ordinary linear diffe...
متن کاملA Problem of Axisymmetric Vibration of Nonlocal Microstretch Thermoelastic Circular Plate with Thermomechanical Sources
In the present manuscript, we investigated a two dimensional axisymmetric problem of nonlocal microstretch thermoelastic circular plate subjected to thermomechanical sources. An eigenvalue approach is proposed to analyze the problem. Laplace and Hankel transforms are used to obtain the transformed solutions for the displacements, microrotation, microstretch, temperature distribution and stresse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. London Math. Society
دوره 83 شماره
صفحات -
تاریخ انتشار 2011